MODULE 1 COMPUTER PROGRAMMING

CREDIT POINTS 10

STATUS Core

ASSESSMENT Continuous Assessment 70%
Examination 30%

TOTAL CONTACT HOURS: 144
Lecture: 72 Practical: 72
Tutorial: Other:

TOTAL STUDENT EFFORT: 200

Aims

This module shows you how to design high-quality programs in a systematic way. All the relevant
concepts and techniques are explained and exemplified in the clearest, simplest language.

Many introductory courses on programming only teach the commands of some (popular) programming
language, show a few examples of already-written programs, and then leave the student to work out how
the programs were made. Our approach is different. we show you how to design programs; we
demonstrate the techniques with many examples, and then take you through a long series of exercises and
problems that have been designed to develop your problem solving and program design skills. Hence, for
example, we will use only a small subset of a programming language—just enough to serve our needs.
Our aims are ambitious: we want you to become great programmers. This module is a first step towards
achieving this goal. You don’t have to know a programming language before taking this module; it’s okay
if you haven’t programmed before. What is required, however, is a willingness to work conscientiously
with us throughout the module; you need to develop an appetite for programming, a desire to learn as
much as you can.

Learning Outcomes

Upon successful completion of this module, you should be able to:

1. solve programming problems of modest complexity in a systematic, well-organised way
2. specify precisely the syntax and semantics of a programming language construct

3. select an appropriate program construct (or datatype) to achieve a given task



document accurately the design of a program on-the-fly
determine the basic efficiency of an algorithm
reproduce in detail the design and analysis of a range of standard algorithms

design a systematic suite of tests for a given program and implement it

© N o v &

prepare the text of a program in a well-formatted, conventional manner and develop these
programs using an integrated development environment

Indicative Content

Topic Description

Introduction What is “computational thinking”? Brief tour of fundamental notions
and motivation | (e.g. computation, algorithm, program, programming language,
(first session) programming, specification, correctness, efficiency, documentation)
through simple case studies.

Format of this module. How to study programming (regular study and
practise essential).

Programming- Expressions. Output. Basic program structure. Comments. Variables.
in-the-small Assignment. Input. Specifying alternatives and repetitions.

(approx. 12 Defining the notation precisely: EBNF, syntax diagrams.

weeks)

Functions. Parameters. Signature. Procedures. Copy rule.

Integers. Fractionals. Booleans. Strings. Characters. Operators,
precedence, order of association, undefinedness, finiteness, type
coercion (light treatment), libraries (light treatment). Classes as records.
Arrays.

Invariants. Systematic loop design using invariants. Loop archetypes.

Introduction to | Classes. Objects. Instance variables. References. Abstraction. Private.
object-oriented | Public. Methods. Constructor. Polymorphism.

programming Exception handling (light treatment). Files.

(approx. & Introduction to inheritance, genericity, abstract datatypes, class

weeks . .
) invariants.

Big case study.

Introduction to | Review of invariants.

algorithm Sequence processing archetypes (e.g. Dutch National Flag, Find, select
design (approx. | the minimum, reverse, rotate, shift, insert into sorted array). Simple
6 weeks) sorting (e.g. insertion sort, selection sort, bubble sort). Binary search.

Basic efficiency considerations.




Introduction to recursion. Simple examples (e.g. factorial, Fibonacci,
Towers of Hanoi, Quicksort).

Systematic
design
(throughout)

Stepwise design. “Understand the problem”. Making specifications
precise. Invariants as loop design “blueprints”.

Precise documentation as essential means of managing the design
process. Informal pre- and postconditions for procedures, functions,
and methods. Naming conventions.

Notion of software “tool”.

Systematic testing. Test suites.

Practical tools
(throughout)

Brief overview of compiler, interpreter, integrated development
environment.




